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Abstract

A powerful dynamic system identification method is proposed for the determination of the characteristic response function of a class of dissipative
(e.g., rheological) material-systems from an experimental dynamic system analysis. In this context, a model of rational function of polynomials
for the so-called “transfer response function” is assumed. In this context, a discrete-time system analysis method is first introduced to identify the
order and parameters of the model. Second, the characteristic function of the system is obtained by using an inverse integral method. The numerical
scheme and pertaining examples for testing the model are presented. It is concluded that the proposed procedure, although powerful, is easy to use,
and the pertaining model is accurate and efficient.
© 2005 Elsevier B.V. All rights reserved.

K

1

l
c
a

1

2

b
h
s
m
c

t
d
t

0
d

eywords: Dynamic; System; Model; Viscoelastic; Material; Numerical

. Introduction

A fundamental task of most physical sciences is the estab-
ishment of mathematical models for the analysis, prediction and
ontrol of physical processes. Such models may be obtained by
dopting, for instance, one of the following two approaches:

. Physical reasoning by observing the behaviour of the physical
process.

. Mathematical modelling that would be based on the analysis
of experimental data concerning the system.

The first approach is based mainly on the analysis of the
asic constitutive properties of the system. The second approach,
owever, does not concern itself about the type of the physical
ystem it is dealing with. Instead, it analyses and establishes a
odel from the experimental input and output data and/or signals

oncerning the system.
For a linear dissipative system, it is well recognized that

he behavioural functions characterizing both quasi-static and
ynamic responses are interrelated. Quasi-static experiments,

siderably long periods of time to be performed. To overcome
such inconvenience, dynamic methods are recently attracting
the attention of researchers. Gibson et al. [1], for instance,
presented a method by which experimental dynamic data are
used to determine both quasi-static and dynamical response
behaviour of the material. In their method, the complex moduli
were obtained first from vibration measurements by employing
Fast Fourier Transform technique. Then, the quasi-static time-
dependent properties were calculated from the experimentally
determined dynamic properties by employing a numerical inte-
gration algorithm.

A new method is introduced in this paper by considering
the dissipative material as a dynamical system. A relation is
first established between the quasi-static response functions and
corresponding frequency functions of a specifically proposed
dynamical system. In the frequency domain, an analytical model
is assumed for the frequency response function of the system,
then, a discrete-time system analysis is developed to estimate
the order and parameters of the proposed model. The efficiency
and accuracy of the proposed method are demonstrated through
a number of numerical examples.
o determine such response functions, require, however, con-
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2. The model

For a linearly dissipative material system, the relationship
b
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etween the stimulus (input) and the output can be written in the
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following general form [2,3]:

y(t) =
∫ ∞

−∞
x(τ)g(t − τ) dτ (1)

where in the relaxation phase:

x(t) = dε(t)

dt
, g(t) = R(t), y(t) = σ(t) (2)

and in the creep phase:

x(t) = dσ(t)

dt
, g(t) = C(t), y(t) = ε(t) (3)

In the above two equations, ε(t) and σ(t) are the time-dependent
strain and stress, respectively, R(t) the relaxation function and
C(t) is the creep function. For simplicity, we will refer to Situ-
ation (2), Eq. (2) above, as the “relaxation experiment”, and to
Situation (3) as the “creep experiment”.

From a system theory point of view, Eq. (1) represents a
relationship between an input x(t) and a corresponding output
y(t) of the system with g(t) being the “system characteristic
function”.

Therefore, if one considers the dissipative material system
as a dynamical system, then, the characterization of its time-
dependent behaviour would be a process of identification of the
corresponding system from dynamical measurements.
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Denoting the inverse Fourier transform of the frequency
response function F(iω) by f(t), then, in view of expressions
(8) and (9), it follows that

f (t) =
∫ ∞

−∞
F (iω) eiωt dω = 2πg(t) (11)

Thus, Eq. (11) implies that the frequency response function of
the dynamic system is the Fourier transform of the characteristic
function g(t) of the system multiplied by 2π.

To model the behaviour of the dissipative material system
under consideration, we assume [3] that the frequency response
function of the corresponding dynamic system has the following
form:

F (iω) = a

(iω)p + b1(iω)p−1 + · · · + bp−1(iω) + bp

(12)

where a and b1, b2, . . ., bp are constant parameters.
In correspondence to Eq. (12) above, the system characteristic

function g(t) is derived as follows:
Assuming the following pth-order algebraic equation:

sp + b1s
p−1 + · · · + bp−1s + bp = 0 (13)

with roots ξ1, ξ2, . . ., ξp, Eq. (12) can, then, be written as
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Taking Fourier transform of y(t) and x(t) and denoting:

(iω) = 1

2π

∫ ∞

−∞
y(t) e−iωt dt (4)

nd

(iω) = 1

2π

∫ ∞

−∞
x(t) e−iωt dt (5)

hen, by combining Eqs. (1) and (4) it follows that

(iω) = 1

2π

∫ ∞

−∞
e−iωφg(φ) dφ

∫ ∞

−∞
x(τ) e−iωτ dτ (6)

here ϕ is the time parameter (t–τ) and ω indicates the fre-
uency. Thus, by combining (5) and (6), one has the following
elation in frequency domain:

(iω) = 2πH(iω)X(iω) (7)

here

(iω) = 1

2π

∫ ∞

−∞
e−iωtg(t) dt (8)

ith reference to Eq. (8), H(iω) is the Fourier transform of
he system characteristic function g(t). Meantime, the frequency
esponse function of the system is identified as

(iω) = 2πH(iω) (9)

n terms of the frequency response function (9), Eq. (7) becomes

(iω) = F (iω)X(iω) (10)
(iω) = a

(iω − ξ1)(iω − ξ2) · · · (iω − ξp)
(14)

urther, the above equation can be expressed in a partial fraction
orm as

(iω) =
p∑

m=1

Am

iω − ξm

(m = 1, 2, . . . , p) (15)

here Am (m = 1, 2, . . ., p), corresponding to roots ξm

m = 1, 2, . . ., p), are calculated by

m = a∏p
j=1(ξm − ξj)

(j, m = 1, 2, . . . , p, j �= m) (16)

aking the inverse Fourier transform of Eq. (15), one obtains

(t) =
∫ ∞

−∞
F (iω) eiωt dω =

∫ ∞

−∞

p∑
m=1

Am

iω − ξm

eiωt dω

=
p∑

m=1

Am eξmtu(t) (m = 1, 2, . . . , p) (17)

here u(t) is the Heaviside function. Thus, Eq. (17) can be writ-
en as

(t) =

⎧⎪⎨
⎪⎩

p∑
m=1

Am eξmt, t ≥ 0

0, t < 0

(m = 1, 2, . . . , p) (18)



12 Y.M. Haddad, P. Yu / Thermochimica Acta 442 (2006) 10–13

From Eqs. (2) and (17), the relaxation function R(t), in a dynamic
relaxation experiment, is expressed as

R(t) = 1

2π
f (t)

=

⎧⎪⎨
⎪⎩

1

2π

p∑
m=1

Am eξmt, t ≥ 1

0, t < 0

(m = 1, 2, . . . , p) (19)

On the other hand, if the experiment is a dynamic creep experi-
ment, then, the system characteristic function g(t) represents the
creep function. Thus, the expression for the creep function C(t),
corresponding to (19), can be written as

C(t) = 1

2π

p∑
m=1

Am eξmtu(t)

=

⎧⎪⎨
⎪⎩

1

2π

p∑
m=1

Am eξmt, t ≥ 0

0, t < 0

(m = 1, 2, . . . , p) (20)

3. Numerical evaluation
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Fig. 1. Output y(t) corresponding to the input: x(t) = 100 sin(t1.5) with 	T = 0.01.
First-order system function ẏ + 5y = x(t) with parameters a = 1.0, b1 = 5 and an
order p = 1.

Table 1
Errors in determining three different discrete-time systems

Order Error

First 0.852409E−02
Second 0.253536E+00
Third 0.634591E−1

From Table 1, above, the DTS of first order is the system with
minimum error, therefore, one chooses this first-order DTS to
model the continuous system governed by the first-order differ-
ential equation of (22).

In this context, Fig. 2 shows the exact and estimated
responses given by the first-order DTS. Meanwhile, Fig. 3
shows the exact and estimated values of the system charac-
teristic function g(t) as obtained from the arrived at first-order
DTS.
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To test the accuracy and efficiency of the proposed model, a
umber of numerical illustrations are carried out. The formalism
f these illustrations is outlined as follows:

. For a given system, calculate the response under certain
dynamic loading by a numerical method. Then, two discrete-
time series (one is the input into the system and the other is
the response) are obtained.

. Assuming that no other knowledge about the system is given,
except the following experimental two discrete-time series,
determine, first, the parameters of the discrete-time system
function, then, establish the corresponding continuous sys-
tem function.

yi = y(	Ti), xi = x(	Ti) (i = 0, 1, 2, . . .) (21)

As an illustrative example, we consider below the first-order
system:

ẏ + 5y = x(t) (22)

under an input represented by: x(t) = 100 sin(t1.5).

From the model above, the parameters of system (22) can be
etermined as

= 1, b1 = 5 and a = 1.0

ith an input x(t) = 100 sin(t1.5), which may be the rate of strain
r stress, one obtains a discrete-time series of output as plotted,
ith 	T = 0.01, in Fig. 1. One uses, then, discrete-time systems

DTS’s) of different orders to model the system. The errors per-
aining to three different discrete-time systems were calculated
nd are listed in Table 1.
ig. 2. The exact and the estimated responses from the first-order DTS. First-
rder system: function ẏ + 5y = x(t) with parameters a = 1.0, b1 = 5, p = 1 and
he input x(t) = 100 sin(t1.5) with 	T = 0.01.
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Fig. 3. The exact and the estimated system characteristic values of the charac-
teristic function g(t) as derived from the first-order DTS. First-order continuous
time system: function ẏ + 5y = x(t) with parameters a = 1.0, b1 = 5, p = 1 and
the input: x(t) = 100 sin(t1.5) with 	T = 0.01.

4. Conclusions

A new method for dynamic identification of a class of lin-
ear dissipative (e.g., rheological) systems is developed. In the

presented method, a rational function of polynomials model for
the frequency response function, of an associated dynamic sys-
tem, is first developed. A discrete-time system analysis method
is, then, introduced to identify the order and parameters of the
model directly from the input and output signals of the system.
Numerical examples show that the proposed model is efficient
and accurate.
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